Estimation of the Brownian dimension of a continuous Ito process
نویسنده
چکیده
In this paper, we consider a d-dimensional continuous Itô process which is observed at n regularly spaced times on a given time interval [0, T ]. This process is driven by a multidimensional Wiener process and our aim is to provide asymptotic statistical procedures which give the minimal dimension of the driving Wiener process, which is between 0 (a pure drift) and d. We exhibit several different procedures, all similar to asymptotic testing hypotheses.
منابع مشابه
The Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems
Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...
متن کاملOn the Predictability of Price Fluctuations in Tehran Stock Exchange A Correlation Dimension Estimation Approach
This paper employs a general non-linear analysis tool to analyse the nature of time series associated with the price (returns) of a particular company in Tehran Stock Exchange. It is shown that the behavior of the process associated with the price (returns) time-series of this company is weakly chaotic, and due to the non-random behavior of the process, short term prediction of stock price is p...
متن کاملOn the Predictability of Price Fluctuations in Tehran Stock Exchange A Correlation Dimension Estimation Approach
This paper employs a general non-linear analysis tool to analyse the nature of time series associated with the price (returns) of a particular company in Tehran Stock Exchange. It is shown that the behavior of the process associated with the price (returns) time-series of this company is weakly chaotic, and due to the non-random behavior of the process, short term prediction of stock price is p...
متن کاملStochastic Heat Kernel Estimation on Sampled Manifolds
The heat kernel is a fundamental geometric object associated to every Riemannian manifold, used across applications in computer vision, graphics, and machine learning. In this article, we propose a novel computational approach to estimating the heat kernel of a statistically sampled manifold (e.g. meshes or point clouds), using its representation as the transition density function of Brownian m...
متن کاملApproximation solution of two-dimensional linear stochastic Volterra-Fredholm integral equation via two-dimensional Block-pulse functions
In this paper, a numerical efficient method based on two-dimensional block-pulse functions (BPFs) is proposed to approximate a solution of the two-dimensional linear stochastic Volterra-Fredholm integral equation. Finally the accuracy of this method will be shown by an example.
متن کامل